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The analogy between the field-induced and flow-induced deformations of nematic liquid
crystals is summarized. The threshold onset of the deformation occurring under rigid boundary
conditions, the unwinding of the helical axis in a chiral nematic material, and the saturation
threshold appearing for weak anchoring are described as examples of analogous phenomena
which take place both in external fields and during shear flow. The analogy has allowed
prediction of a new threshold effect possible in a sheared, weakly anchored nematic. The
description of this effect is supported by numerical calculations. Stability analysis was also

performed.

1. Introduction

From the macroscopic point of view, an equilibrium
state of a nematic liquid crystal is characterized by a
director field n(r). It is well known since the early stages
of the study of liquid crystals that the director distri-
bution can be easily influenced by external fields, flow
and surface interactions [ 1]. In this paper, the analogy
between the orienting effects induced by an external
magnetic field and by flow of the liquid crystal material
is discussed. Only the static deformations of defect-free
structures are taken into account. For the sake of clarity,
the simplest cases of a chiral nematic subjected to a
magnetic field or to simple shear flow are considered.
The surface interactions, which determine the boundary
conditions, are taken into account in all cases. The
properties of the torques influencing the director field
are described in §2. The results illustrating the above
mentioned analogy are briefly reviewed in §3 and 4. In
§ 5, this picture is completed by analysis of one particular
new case, namely the deformation of a weakly anchored
nematic oriented at a certain special angle and subjected
to shear flow. This case reveals the threshold character
and is predicted from the analogy to the deformation
taking place in an external field.

In the following, the chiral nematic liquid crystal is
characterized by diamagnetic anisotropy Ay, elastic
constants k11, k22, k33, undistorted pitch Po and Leslie
viscosity coefficients a;, (i=1-6).

2. The torques
The torques acting on the director, referred to unit
volume of the nematic liquid crystal, are given by the

textbook formulae [1]. In real samples, the director
distribution is affected by torques of two or more types
at the same time. In this section however, the torque of
each type is described independently.

In the case of a magnetic field of strength H, the
torque is

Tmagnetic =Ax(n H)(n X H). (1)

It vanishes, if n[H or n1H. Both configurations may
correspond either to the stable or to the unstable
equilibrium, depending on the sign of the diamagnetic
anisotropy Ay.

In the case of flow, the torque is due to the coupling
between the director and the velocity gradient. It is
determined by the velocity field v(r) and is described by
a somewhat more complex formula

Tviscous =n X (VIN + 72d n) (2)

where y1=asz— a2, n=o3t a2, N=n—oXn, o=1/2(VXv),
and d is a symmetric part of the velocity gradient tensor
which has components

1 6v,— 6v,-
d,‘,': - —+— .
2 6)6_,‘ 6)6,'

The quantity y1N+yd n=U represents a viscous

part of the molecular field. In the static cases considered
in this paper, n=0. The viscous torque vanishes if
U=0 or if Ulln. The former case becomes real if n is
normal to the plane of shear, i.e. n1v and n1Vv. The

condition Ulln corresponds to two distinct director
orientations within the plane of shear, when the angle 0
measured between n and v is equal to +6c. or — 6,

0267-8292/98 $12:00 © 1998 Taylor & Francis Ltd.
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where 9c=arctan(a3/a2)1/2. In the following, these two
orientations will be distinguished by means of two
versors denoted ¢ and ¢, respectively. They exist only
for so-called ‘flow aligning nematics’, for which a3/a2>0.
The orientation ¢ corresponds to the stable equilibrium,
whereas ¢ is related to the unstable equilibrium. These
two orientations are analogous to the states n[[H and
n1H occurring for Ay >0, respectively. In materials for
which a3/a2<0, the only possibility of equilibrium in
the shear flow appears if n is normal to the shear plane,
since U=0. The condition U=0 corresponds to the trivial
equilibrium H=0 in the magnetic case. If U#0, no
equilibrium is realized. In the magnetic counterpart of
this case, the field H= 0 always leads to an equilibrium.
This means that nematic liquid crystals are always ‘field
aligning’. The analogies mentioned in the following
sections concern flow aligning nematics.

The boundary conditions are usually described by the
Rapini-Papoular expression for the surface interaction
energy

Fsurface:_(W/z)(n 6)2 (3)

where W is the anchoring energy coefficient and e is the
easy axis versor. The surface torque is therefore given
by

Tsurface= W (n e)(n X e) (4)

and this vanishes if nlle or nle giving the stable and
unstable equilibrium, respectively.

The torque per unit volume due to the curvature
elasticity is determined by the formula

Telastic=mn X he (5)

where h. is the elastic part of the molecular field,
consisting of three parts

he=hs+ hr+ hg (6)
where
hs =k V(V n)
ht= — kn[A(VXn)+ VX (A n)] (7)
hg=k33[BX (VXn)+VX((nXB)]
and

A=n (VXn)
B=nX(VXn).

This rather complex expression can be significantly

simplified when the one-constant approximation
(knn=kxn=k3s3=k) is adopted:
he =4V7n. (8)

In the absence of other torques, nllhe and Telasic vanish

identically. The elastic torque vanishes also when he =0.
In the equal elastic constants’ approximation, the latter
condition can be easily expressed as

v’n=0. 9)

This is satisfied for instance at a uniform director field.
In the examples discussed in this paper only uniform
director distributions are considered as structures in
which Tejastic = 0.

3. The threshold effects

In this section a uniform layer of thickness d placed
parallel to the xy plane is considered. The rigid boundary
orientations, identical on both plates, are determined by
the easy axis versors e. The layer is under the influence
of the magnetic field H, or it is subjected to the simple
shear flow occurring under the action of a shear stress
t directed along the y axis. The plane of shear is parallel
to the yz plane. In general, when the magnetic field is
arbitrarily oriented with respect to the easy axis, the
deformation starts at any field strength. The same applies
for the shear flow deformation, which starts at any shear
stress if the surface orientation is arbitrary. The threshold
behaviour can take place in configurations for which the
undistorted state nlle remains in equilibrium at any field
strength or at any shear stress. This condition is necessary
for the bifurcation of the stable states. The torque of
each kind (e.g. magnetic, viscous, elastic or surface
anchoring torque) vanishes in such states. This condition
is not sufficient in trivial cases which remain stable
and undeformed: for example, the configuration Hlle
(and Ax>0) in the magnetic case, and the configuration
with elle” in the flow case.

In the magnetic case Hle, the equilibrium uniform
state nlle loses its stability above the threshold field and
bifurcation of the stable states develops. For instance, in
a planar cell with elly and subjected to the field Hlz,
the threshold value is given by

Ho= (n/d)(k1i/ay " (10)

An analogous effect can be predicted for the shear
flow case, if n is confined within the shear plane and
aligned initially along the e versor forming the angle
— 0. against the y axis (elle”), [2,3]. The threshold
shear stress 7., expressed in non-dimensional form,
obtained by scaling with k33 nld, is given by

kst s)(s—1)
T o[s(1+)]" (1)

Cc

where ks:kll/k33, s=a3/a2, r=(a3+ o4+ a())/(Zaz),
[3]. The unified description of both threshold phenomena
can be given in terms of catastrophe theory [3,4].
The cusp catastrophe is also adequate for both cases
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[5]- The bifurcation of the equilibrium states is shown
schematically in figure 1.

4. Chiral nematics
The most spectacular deformation of chiral nematics
is the unwinding of the helical structure [6]. It occurs
when the magnetic field is applied perpendicularly to
the helix axis. The liquid crystal free from boundary
constraints is considered for the sake of simplicity. In
this case the structure deforms continuously. Its spatial
period increases until the threshold magnetic field is
achieved, [7]:
2 12
=2 X2\ (12)
Po\ Ay
As a result the nematic liquid crystal with n|[H arises.
The shear flow can produce an analogous influence
on the flow aligning chiral nematic when the helix axis
is perpendicular to the velocity vector and to the velocity
gradient [ 8]. An analogous critical shear rate uc exists:

. 4T[4k22

= 13
pep (13)

Uc

0
sz [xk— (a3— a2)0+ (a3+ a2) sin 0 cos 6] do
O~ n

(14)
and
k= (a3— a2)0c+ (a3 + a2) sin 6c cos O (15)

above which the unwound nematic structure appears.
The director is uniformly aligned in the plane of shear
and makes the angle 6. with the flow direction.

@ (b) ©

angle

—
shear stress or field strength

Figure 1. The bifurcation of equilibrium states due to the
cusp catastrophe. In the magnetic case the curve (b) occurs
for planar or homeotropic layers whereas the curves (a)
and (c) occur for obliquely oriented layers. In the flow
case, the curves (a), (b) and (c) appear sequentially for
increasing values of s. Full lines are due to stable states,
dotted lines to unstable states.

5. Weak anchoring

Under infinite or very strong anchoring conditions,
the director at the boundaries remains undeformed
regardless of the nature of the external forces. However
if the anchoring is weak, the director field can be deformed
not only in the bulk, but also at the boundary plates.

Let us consider a uniform nematic slab confined
between two plates on which elly and subjected to the
magnetic field H||z [9, 10, 11]. The necessary condition
for the threshold behaviour is fulfilled in two cases: nlle
and nle, since in both configurations the torques of
each kind, exerted on the director in a uniform nematic,
vanish simultaneously: Tmagnetic =0, Celastic=0, [surface=0.
In the absence of the field, or at sufficiently low fields,
the state nlle is stable. This state loses its stability above
a certain threshold Hi. New stable states due to the
distorted director field appear. The configuration n_.le
is unstable at low field, but it becomes stable above
some other threshold field H>> Hi, when the layer is
uniformly aligned along the field n[[H. Both thresholds
depend on the anchoring energy and, in the one constant
approximation, are given by the formulae [9]:

nH| nHi
—=cot(—) (16)
gHo 2Hy
H H
2= coth [ — (17)
gHo 2Hy

where Hy is given by equation (10) and g = W d/k1;.

One can try to extend the analogy considered in this
paper in order to find new effects in the case of shear
flow. However in the case of shear flow, the analogy of
the field induced behaviour is incomplete.

The viscous torque can vanish in the uniform layer
if the director is oriented at the angle 6. or — 6, i.e. if
nlle” or nlle”. The surface torque vanishes if nlle or
nle. These conditions distinguish four equilibrium
configurations: two with nlle and two with n_Le.

The configuration (nlle, elle”) is stable at any shear
stress. The structure (nlle, ellc™) becomes deformed
above the threshold stress as described in §3. The
second threshold stress analogous to H» cannot exist for
this structure, since the final orientation nlle ™ is not
perpendicular to e, and [surface remains different from
zero.

The two structures with n_le are obviously not stable
at rest. They cannot be taken into account as the initial
states and therefore no threshold onset of deformation
can occur for them. The configuration (nllc”, elc™) is
not stable at high stress either.

The last configuration (nlle”, ellc ) assures stability
at sufficiently high stress and yields an opportunity for
the upper threshold shear stress, above which the final
structure nlle” becomes stable. In the following, the
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stability of such a system is analysed and then a suitable
example is calculated numerically.

5.1. Stability analysis

Let us consider the flow aligning nematic layer
oriented by the particular boundary conditions at the
angle 6s= 0.+ n/2. The director does not come out of
the plane of shear under these circumstances and its
distribution can be described by only one angle 6(z).
The complete form of the approach applied here was
used earlier in ref. [3].

The distortion of the director field under the action
of the shear stress is connected with the free energy due
to the curvature elasticity and to the action of the viscous
torque [3, 12]. Its value per unit area of the layer can
be expressed in a form [3]

- 1/2 2 P
F=— (sin2 0— ks cos’ 0) de+i—
2d J_ip d¢ d
1/2 1/2
r—s P
X J 0———parctan| [~ tan 0 d¢
-1/2 (pr) r
2k33 2
—Tgks[cos (6b— 65)] (18)

where p =r—s— 1, ¢=z/d and 0y determines the director
orientation at z = =+ d/2.

The stability in the nlle” structure, with respect to
small perturbations, is investigated. The perturbed
director distribution is assumed in a form

0(&) = 0.+ £ cos(ng) + v. (19)

Therefore F is analysed as a function of two variables
& and w. The angle & measures the amplitude of the
deformation, and the angle y measures the director
deviation at the boundaries. The real form of the 6(¢)
dependence differs from the cosinusoidal shape assumed
by equation (19). Therefore the analysis has only
qualitative character. The unperturbed state 0(g)= 6.
is related to equilibrium, since OF/9E|.=w=0=0 and

OFIoy|,=oy=0=0 at any shear stress. The state £=0,

v =0 is stable, provided that

0’ FIOE | .=0y=0>0 (20)
and
o
o8’ ocoy
detf ) >0 (21)
OF OF
ogow  ov' L=ow=o

which lead to two inequalities:
12

kst s 2s
—t >0 (22)
1+s r—s
1/2
2s kst s\ s
AP —8) s+t [ dgks— o —
(r—s) 1+s Jr—s
pek i (23)
& 14 '

The above conditions are satisfied if the shear stress
exceeds the threshold value 72. For instance, its numerical
value is 12 =612 for the material constants: ks = 0-833,
s=001, r= —0-2, which give 6. =0-09968 and for the
anchoring parameter g =>5.

5.2. Numerical results

The threshold behaviour predicted above is confirmed
by the numerical solution of the balance of torques
equations. In figure 2, the midplane angle 6, and the
boundary angle 0y are plotted against the shear stress ¢.
At high stress, the Om(¢) curve approaches the 0. value
almost tangentially. The threshold effect is however
evident from the 6y(¢) plot, which ends at about 1 =7-8.
In order to show the peculiar character of the behaviour,
the 6p(7) dependence for 6;=mn/2 is plotted for com-
parison. The development of the deformation with
increasing ¢ is illustrated in figure 3, where the profiles
0(g) are shown. The profiles for high stresses are flatter
than that postulated by means of equation (19), which
may be the reason for the quantitative discrepancy
between the threshold values obtained in the two
ways. The high stress structure is uniform with 6(g)= 6.
Analogy with the magnetic case is evident from figure 4,

angle/rad

Figure 2. The mid-plane angle 6, and the boundary angle
0, as functions of the reduced shear stress ¢. Full lines
are due to stable states, the dashed line to the unstable
state (nlle ", elc™), and the thin line illustrates the 6y(¢)
dependence of the homeotropic layer.
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Figure 3. The director profiles 6(s) for various shear stresses
(indicated for each curve).

15
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angle/rad
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-01 1 1 i
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Figure 4. The mid-plane angle 6, and the boundary angle 6,
as functions of the reduced magnetic field H/Ho calculated
for the homeotropic layer; ks =0-833, g=5. Full lines are
due to stable states, dashed lines to unstable states.

where the deformation of the weakly anchored homeo-
tropic layer induced by the magnetic field parallel to the
plates is illustrated by numerical results.

6. Summary

In the present paper, the analogy between the field
induced and the shear flow induced deformations has
been illustrated. The simple geometry of the cases con-
sidered made it possible to reveal the similarities clearly,
and a new effect was predicted on the basis of this
analogy. Three examples of analogous behaviour have
been presented:

(1) Deformations of the nematic layer in the external
field and in shear flow possess threshold character.

(i1) Unwinding of the helical axis occurs both in the
external field and in shear flow.

(iii) Weakly anchored nematics achieve the saturated
deformation above some critical field strength
and above some critical shear stress.

The deformations caused by the flow are more
complex than those induced by the external fields.

In the magnetic case, two director orientations can be
realized, depending on the sign of diamagnetic aniso-
tropy: parallel or pependicular to the field vector H.
The magnetic torque vanishes in these two orientations.
Therefore there are two uniform director distributions,
one perpendicular to the other, in which T'magnetic =0,
Celastic = 0 and Tsurface = 0 simultaneously (provided that
the surface anchoring energy is determined by n e).

In the shear flow case, the equilibrium is realized in
two uniform orientations determined by the versors
¢" and ¢. Their directions can vary continuously,
depending on the material constants a2 and as3. The
angle between the orientations ¢ and ¢~ at which the
viscous torque vanishes is equal to 26, which is smaller
than =/2 and is temperature dependent. The torques
Tviscous, Delastic and Isurface can therefore vanish simul-
taneously only at one of the configurations ¢ ore.
These features of the viscous torque lead to a rich variety
of phenomena observed in flowing nematics. Even more
dramatic evidence of the significance of the material
constants for the character of the influence of the flow
is the tumbling effect of non-flow aligning nematics, due
to the non-vanishing viscous torque.

The surface orientation angles equal to 6c or 6.+ =/2,
although very special, can be achieved experimentally
by chemical treatment and rubbing techniques [13]
which can produce the entire range of tilt angles from
planar to homeotropic.

7. Conclusions

The analogy ascertained in this paper concerns static
cases of one-dimensional deformations, but one can try
to extend this analogy to dynamic phenomena and
to two-dimensional deformations. This idea might lead
to some new experimental and theoretical results. For
instance, two possible effects can be taken into
consideration:

(i) During the onset of the field induced transition,
a transient backflow effect takes place [14]. An
analogous phenomenon might be expected in the
shear flow case. The transient director reorientation
could then influence the velocity profile of the
nematic by superimposing some kind of backflow
on the shear induced flow.

(ii) In nematic liquid crystals possessing extremely
high elastic anisotropy, the deformations caused
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by the magnetic field take form of periodic patterns
[15]. An analogous effect induced by shear flow
is plausible for this class of nematics.
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